In mathematics, in semigroup theory, an involution in a semigroup is a transformation of the semigroup which is its own inverse and which is an anti-automorphism of the semigroup. A semigroup in which an involution is defined is called a semigroup with involution or a *– semigroup. In the multiplicative semigroup of real square matrices of order n, the map which sends a matrix to its transpose is an involution. In the free semigroup generated by a nonempty set the operation which reverses the order of the letters in a word is an involution.
Contents |
Let S be a semigroup. An involution in S is a unary operation * on S (or, a transformation * : S → S, x → x*) satisfying the following conditions:
The semigroup S with the involution * is called a semigroup with involution.
Certain basic concepts may be defined on *-semigroups in a way that parallels the notions stemming from a (von Neumann) regular element in a semigroup. A partial isometry is an element s when ss*s = s; the set of partial isometries is usually abbreviated PI(S). A projection is an idempotent element e that is fixed by the involution, i.e. ee = e and e* = e. Every projection is a partial isometry, and for every partial isometry s, s*s and ss* are projections. If e and f are projections, then e = ef if and only if e = fe.
Partial isometries can be partially ordered by s ≤ t if and only if s = ss*t and ss* = ss*tt*. Equivalently, s ≤ t if and only if s = et and e = ett* for some projection e. In a *-semigroup, PI(S) is an ordered groupoid with the partial product given by s•t = st if s*s = tt*.
The partial isometries in a C*-algebra are exactly those defined in this section. In the case of Mn(C) more can be said. If E and F are projections, then E ≤ F if and only if imE ⊆ imF. For any two projection, if E ∩ F = V, then the unique projection J with image V and kernel the orthogonal complement of V is the meet of E and F. Since projections form a meet-semilattice, the partial isometries on Mn(C) form an inverse semigroup with the product .[2]
A semigroup S with an involution * is called a * – regular semigroup if for every x in S, x* is H-equivalent to some inverse of x, where H is the Green’s relation H. This defining property can be formulated in several equivalent ways. Another is to say that every L-class contains a projection. An axiomatic definition is the condition that for every x in S there exists an element x’ such that x’xx’ = x’, xx’x = x, ( xx’ )* = xx’, ( x’x )* = x’x. Michael P. Drazin first proved that given x, the element x’ satisfying these axioms is unique. It is called the Moore–Penrose inverse of x. This agrees with the classical definition of the Moore–Penrose inverse of a square matrix. In the multiplicative semigroup Mn ( C ) of square matrices of order n, the map which assigns a matrix A to its Hermitian conjugate A* is an involution. The semigroup Mn ( C ) is a * – regular semigroup with this involution. The Moore–Penrose inverse of A in this * – regular semigroup is the classical Moore–Penrose inverse of A.
An interesting question is to characterize when a regular semigroup is a *-regular semigroup. The following characterization was given by M. Yamada. Define a P-system F(S) as subset of the idempotents of S, denoted as usual by E(S). Using the usual notation V(a) for the inverses of a, F(S) needs to satisfy the following axioms:
A regular semigroup S is a *-regular semigroup, as defined by Nordahl & Scheiblich, if and only if it has a p-system F(S). In this case F(S) is the set of projections of S with respect to the operation ° defined by F(S). In an inverse semigroup the entire semilattice of idempotents is a p-system. Also, if a regular semigroup S has a p-system that is multiplicatively closed (i.e. subsemigroup), then S is an inverse semigroup. Thus, a p-system may be regarded as a generalization of the semilattice of idempotents of an inverse semigroup.
Let be two disjoint sets in bijective correspondence given by the map
Denote by (here we use instead of to remind that the union is actually a disjoint union)
and by the free semigroup on . We can extend the map to a map
in the following way: given
then we define
This map is an involution on the semigroup . This is the only way to extend the map from to , to an involution on .
Thus, the semigroup with the map is a semigroup with involution. Moreover, it is the free semigroup with involution on in the sense that it solves the following universal problem: given a semigroup with involution and a map
a semigroup homomorphism
exists such that
where
is the inclusion map and composition of functions is taken in the diagram order. It is well known from universal algebra that is unique up to isomorphisms.
If we use instead of , where
where is the empty word (the identity of the monoid ), we obtain a monoid with involution that is the free monoid with involution on .